

Inserting in a BST

ED
" insert 25 {31\:/ \%0\
e There is only one place where 25 can go fzi\/ \60\
ax \‘ & kR
f12) a7 fed
" //create and insert node with key k in thL_ ______ ____ _

void insert (v, k) {
//this can only happen if inserting in an empty tree
if (v == null) return new BSTNode(k);
if (k <= v.getData()) {
if (v.left() == null) {
//insert node as left child of v
u = new BSTNode(k);
v.setLeft(u);
} else {

return insert(v.left(), k);

}
} else //if (v.getData() > k) {

Inserting in a BST

Analysis:
e similar with searching
e traverses a path from the root to the inserted node
e O(depth of inserted node)
e this is O(h), where h is the height of the tree

Deleting in a BST

delete 87
delete 21
delete 90 féL}
& e
& I
a & B
i G760

case l: delete a
e if x is left of its parent, set parent(x).left = null

e else set parent(x).right = null

case 2: delete a node with one child

e link parent(x) to the child of x

case 2: delete a node with 2 children

o 2?7

Deleting in a BST

delete 90

63
féf/ \%[} I
e T
ax @
a3 BEPe
" copy in u 94 and delete 94
e the left-most child of right(x) “« node has <=1 child

or

copy in u 87 and delete 87
e the right-most child of left(x)

A

node has <=1 child

Deleting in a BST

Analysis:
e traverses a path from the root to the deleted node
e and sometimes from the deleted node to its left-most child

e this is O(h), where h is the height of the tree

BST performance

Because of search property, all operations follow one root-leaf path

insert: O(h)
delete: O(h)
search: O(h)

know that

h>=1g (n+l) - 1

h <= n-1

So in the worst case h is O(n)

BST insert, search, delete: O(n)

just like linked lists/arrays

in a tree of n nodes

6>
L
6 |
v
fe0) a0
/

&1 e e
oe & O 6 6
W MR i
GA ‘i1< fo1) 5‘33< 21 @44
s

63
A

BST performance

worst-case scenario

it is possible to maintain that the height of the tree is Theta(lg n) at all times

start with an empty tree
insert 1
insert 2
insert 3

insert 4

insert n

by adding additional constraints

perform rotations during insert and delete to maintain these constraints

Balanced BSTs: h is Theta(lg n)

Red-Black trees
AVL trees
2-3-4 trees

B-trees

